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  Candidates are required to give their answers in their own words 
as far as practicable. 

Unless otherwise mentioned, symbols have their usual meaning. 

 1. Answer any five questions: 2×5=10 

   (a) Show that Lt→ sin  does not exist. 

   (b) Prove or disprove: The intermediate value theorem is applicable to the function ( ) = 2 + 1,  ϵ (0, 10, = 0 . 

   (c) Show that on the real numbers with the usual metric, the set of natural numbers is closed. 

   (d) Test if Lagrange’s mean value theorem holds for the function ( ) = | | in the interval −1, 1 .   

   (e) Prove or disprove: 

    If ( ) and ( ) be two functions such that lim→ ( ) + ( )  exists, then lim→  ( ) and lim→  ( ) exist.   

   (f) Show that the function ( ) = cos , 0 < < 1, is not uniformly continuous on (0, 1). 

   (g) Find the diameter of the set 

    ( , ): 0 < < , = cos  with respect to usual metric on . 

   (h) Show that in a discrete metric space ( , ), every subset of  is open set.   

 2. Answer any four questions: 5×4=20 

  (a)  (i) Prove that Lt→ ( ) exists and is equal to  if and only if Lt→  ( ) and Lt→  ( ) both 

exist and are equal to . 

    (ii) If a function  is derivable in a closed interval ,  and ( ) ≠ ( ), and  is a real 

number lying between ( ) and ( ), then show that there exists at least one point   ( , ) such that ( ) = . 3+2=5 
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  (b) If  exists and is bounded on some interval , then prove that  is uniformly continuous on . 

  (c) Let ( , ) be a metric space and  be a function on X x X defined by ( , ) = min 1, ( , )} for all ,  ϵ . Show that  is a metric on . 

   (d)  (i) Let : , →  be a function and ϵ ,  and for every sequence } in ,  which 
converges to ‘ ’, we have lim→ ( ) = ( ), then show that ( ) is continuous at = .  

     (ii) Write ∈ −  definition of a function not to be uniformly continuous. 3+2=5 

   (e)  (i) A function : →  is continuous on . Prove that the set =  ϵ : ( ) > 0} is an 

open set in , where  is the set of Reals. 

     (ii) Prove or disprove: 

      Every continuous function is always monotonic. 3+2=5 

   (f)  (i) Show that a subset  of a metric space ( , ) is closed if and only if −  is open set.  

     (ii) In mean value theorem, 

      (ℎ) = (0) + ℎ (θℎ), 0 < θ < 1, lim→  θ = , when ( ) = cos .    

 3. Answer any one question: 10×1=10 

   (a)  (i) Let ( ) = sin , ≠ 00, = 0   Obtain  such that ( ) is continuous at = 0 and ( ) is differentiable at = 0. 
     (ii) Let  be continuous on − ℎ, + ℎ  and derivable on ( − ℎ, + ℎ). Prove that 

there exists a real number θ (0 < θ < 1) for which 

      ( + ℎ) − 2 ( ) + ( − ℎ) = ℎ ( + θℎ) − ( − θℎ) . 
     (iii) Give an example with justification to show that an open set may not be an open sphere. 

       5+3+2=10  

   (b)  (i) When is a function ( ) said to have local maxima at = ? Does ( ) = 0 always 

imply existence of an extremum of  at = ? Justify. 

     (ii) Expand sin θ as a finite series of expansion in ‘θ’. 

     (iii) When a function  is said to be convex function on an interval , ? If  is convex in , ,  then show that  is non-negative in , . 

     (iv) Let ( , ) be a metric space and let , (≠ ) ϵ . Prove that there is a nbd.  of  and 

a nbd  of  such that ∩ = φ. 2+2+4+2=10 
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